

Effective Privacy Preservation in Third-Party Cloud

Storage Auditing

Po-Jen Chuang and Han-Chun Chuang

Department of Electrical and Computer Engineering

Tamkang University

Tamsui, New Taipei City, Taiwan 25137, R. O. C.

e-mail: pjchuang@ee.tku.edu.tw

Abstract — In cloud storage, the third-party auditor (TPA) will perform public

auditing and data integrity check to maintain the integrity of outsourced data stored in

the cloud server. To avoid possible user privacy leakage in the auditing process, the

TPA should learn nothing about the user. This paper presents a new auditing scheme

which can keep the TPA from learning any user data block in an earlier stage – in

contrast to previous schemes. Simulation runs are carried out to examine the privacy

preserving performance of our new scheme and related schemes. The results show that

our scheme is able to produce better privacy protection at no more computation time

cost for involved entities, i.e., the user, server and TPA.

Index Terms — Cloud storage, privacy preserving, third-party auditing, experimental

evaluation.

—————————— ——————————

1 Introduction

Cloud storage allows users to store data in a very handy way, but how

to maintain the integrity of outsourced data stored in the cloud server

remains a major concern and important investigation topic. To check the

integrity of outsourced data, which is quite a difficult task as local data

can be deleted after a user saves it to the cloud, we need an efficient

trustworthy third-party auditor (TPA) to perform public auditing. The

TPA must be a completely trustworthy third party with no possibility to

fetch user data or invade user privacy when checking the integrity of

cloud data. That is, a TPA should learn nothing about users to avoid

possible privacy leakage during the auditing process.

file:///C:/Users/MaxWu/Desktop/論文格式修改/hcchung/pjchuang@ee.tku.edu.tw

 Following the vigorous rise of cloud applications, a number of

investigations have come up with different schemes to secure the third-

party auditing process so as to enhance the TPA’s auditing [1-12].

Among the researches, [1] proposes a basic scheme which uses compact

Proofs of the Retrievability (PoR) to enhance user privacy in cloud

storage public auditing. The PoR scheme nevertheless faces a problem:

Its practice may allow the TPA to learn about users’ personal data in the

auditing process, hence inducing privacy leakage. To better preserve user

privacy, some follow-up schemes involve different designs to improve

the auditing process of PoR. For instance, the Blind scheme [2] tries to

enhance user privacy protection by blinding certain parameters. In

contrast to the original PoR, the blinding design earns better privacy

protection but is still vulnerable to privacy leakage – as it fails to keep

the TPA totally from fetching users’ data in the auditing process.

The major goal of our investigation in this paper is to lessen the

privacy leakage problem in the above third party auditing process in order

to advance user privacy protection. That is, we will build an efficient new

auditing scheme which can improve previous auditing practices to attain

more desirable privacy preservation for cloud data storage. Our basic idea

is to keep the TPA from learning any user data block in an earlier stage.

In our design, we will generate a random parameter p in the early stage

of key generation, use the parameter to blind metadata σi which contains

data block mi and then send p to the server. When the server receives a

challenge message from the TPA for data auditing, it will calculate the

corresponding proof by σi, mi and p, and return the result to the TPA. The

TPA then starts the auditing process by the received proof and public key

pk (generated by the user) to check data integrity.

To examine the privacy preserving performance of our new scheme,

we first use a zero knowledge proof to illustrate our ability to keep the

TPA from practically fetching users’ data. We also use the Pairing-Based

Cryptography (PBC) library to simulate the performance of our scheme

and related schemes in different situations. As the obtained simulated

results demonstrate, in contrast to existing auditing schemes, our new

scheme can substantially advance user privacy protection with no

additional computation time for the three involved entities: the user, the

server and the TPA.

2 Backgrounds and Related Schemes

The assumed possible target threats on user data include (1) data

integrity threats and (2) user privacy leakage threats:

(1) Data integrity threats may come from both internal and external

attacks at cloud servers, such as software bugs, hardware failures, bugs in

the network path, economically motivated hackers, malicious or

accidental management errors, etc. As cloud servers can be self-interested,

they may likely hide such data corruption incidents for their own benefits

in order to maintain reputation [2].

 (2) User privacy leakage threats are our major concern in this

investigation. The threats may come from the TPA who learns the

outsourced data after the auditing. For instance, the TPA may derive the

content of user data from the information collected in the auditing process.

To check the integrity of outsourced data, we need an efficient

trustworthy TPA to perform public auditing to prevent data integrity

threats. The TPA must be a completely trustworthy third party with no

possibility to fetch user data or invade user privacy when checking the

integrity of cloud data. However, a TPA could learn user data during the

auditing process and bring up user privacy leakage threats.

The third party auditing process usually includes User Setup and

TPA Auditing phases. User Setup contains two steps: key generation

(KeyGen) and signature generation (SigGen). A user will produce the

needed parameters (i.e., public and secret keys) in KeyGen and send its

data as well as the metadata to the server in SigGen. TPA Auditing also

contains two steps: proof generation (ProofGen) and proof verification

(VerifyProof). In ProofGen, the TPA first sends the challenge to the

server which then generates the corresponding proof and sends it back.

Receiving the proof, the TPA will audit the user's data and return the

results to the user in VerifyProof.

The following notations are given to facilitate our later illustration of

related auditing schemes.

F: the user's data containing blocks m1, m2, ..., mi, ..., mn

H(): {0,1}* → G1, the hash function which maps the input uniformly

to G1

h(): GT → Zp, the hash function which maps elements of GT to Zp.

g: the generator of G2

2.1 The PoR Scheme [1]

The scheme features Compact Proofs of Retrievability and is hence

briefed as the PoR scheme [2-4]. It has the following auditing process:

▲User Setup

*KeyGen

(1) choose a random secret key x ∈ Zp

(2) choose random elements u, name ∈ G1

(3) choose a random element g ∈ G2

(4) compute υ = gx

(5) generate the secret key sk = (x) and public key pk = (u, g, υ, name)

*SigGen

(1) compute metadata σi for each data block mi, 𝜎𝑖 = (𝐻(𝑊𝑖) ∗ 𝑢𝑚𝑖)𝑥,

Wi = name||i.

(2) send F and Φ = {σi }1≦i≦n to the server

▲TPA Auditing

*ProofGen

(1) The TPA picks random c data blocks to audit (assume the collection

is I, I = {s1,.....,sc}, c < n).

(2) The TPA chooses random c elements{νi ∈ Zp}i∈I.

(3) The TPA generates a challenge message chal={(i, νi)}i∈I to the server.

(4) Receiving chal, the server calculates the proof message P={σ, μ}

(𝜎 = ∏ 𝜎𝑖
𝜈𝑖 𝑖∈𝐼 ; 𝜇 = ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼) and sends P back to the TPA.

*VerifyProof

(1) Receiving the proof message, the TPA verifies the following equation

by the public key pk which the user generates:

 𝑒(𝜎, 𝑔) = 𝑒((∏ 𝐻(𝑊𝑖)
𝜈𝑖) ∗ 𝑢𝜇

𝑖∈𝐼 , 𝜐).

(2) Return True if the equation is true or False otherwise.

The PoR scheme, as we have observed, may induce possible user

privacy leakage because the server needs to send the proof message P (=

{σ, μ}) along with parameter μ to the TPA. For instance, the TPA can

learn about data m1 – and all other blocks – by the following steps:

(1) It first picks blocks m2~m9 to audit and stores 𝜇2,9 after receiving

proof P from the server, 𝑃 = {𝜎2,9 , 𝜇2,9} (𝜇2,9 = ∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=2).

(2) It again picks m1~m9 to audit and stores 𝜇1,9 = 𝑚1 ∗ 𝜈1 + 𝜇2,9 after

receiving proof P from the server, 𝑃 = {𝜎1,9 , 𝜇1,9} (𝜇1,9 =

∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=1).

(3) It then guesses on the random value of m1', calculates 𝜇1,9′ = 𝑚1′ ∗

𝜈1 + 𝜇2,9 , and uses the result to verify equation 𝑒(𝜎, 𝑔) =

𝑒((∏ 𝐻(𝑊𝑖)
𝜈𝑖) ∗ 𝑢𝜇1,9

′9
𝑖=1 , 𝜐).

(4) If the equation is true, it gets the correct value of m1
' and uses it to

learn about m1 – user privacy hence leaks. If the equation is false, it

can go back to (3) to repeat the guessing attempt.

2.2 The Blind Scheme [2]

The Blind scheme is basically similar to the PoR scheme except that

it uses a blind way to avoid possible user privacy leakage in PoR (due to

the fetch of parameter μ). Blind tries to preserve user privacy by

generating a random parameter r to blind parameter μ. It functions as

follows.

▲User Setup

*KeyGen (same as PoR)

*SigGen (same as PoR)

▲TPA Auditing

*ProofGen

(1) The TPA picks random c blocks to audit (assume the collection is I =

{s1,.....,sc}, c < n).

(2) The TPA chooses random c elements{νi ∈ Zp}i∈I.

(3) The TPA generates a challenge message chal={(i, νi)}i∈I to the server.

(4) Receiving chal, the server calculates the proof message P={R, σ, μ}

by choosing a random parameter r and attaining 𝑅 = 𝑒(𝑢, 𝜐)𝑟 , 𝛾 =

 ℎ(𝑅), 𝜎 = ∏ 𝜎𝑖
𝜈𝑖

𝑖∈𝐼 and 𝜇 = 𝑟 + 𝛾 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼 .

(5) The server sends proof P back to the TPA.

*VerifyProof

(1) After receiving proof P, the TPA calculatesγ= h(R) by the public key

pk and verifies the following equation

 𝑅 ∗ 𝑒(𝜎𝛾, 𝑔) = 𝑒((∏ 𝐻(𝑊𝑖)
𝜈𝑖)𝛾 ∗ 𝑢𝜇

𝑖∈𝐼 , 𝜐).

(2) Return True if the equation is true or False otherwise.

By using an additional random parameter r to blind parameter μ, the

Blind scheme improves the user privacy leakage problem in the PoR

scheme. Despite of the improvement, Blind also confronts possible

privacy leakages because the TPA can still find ways to fetch any data

blocks. We use the following data m1 as an example to illustrate such

leaking possibility.

(1) The TPA can get parameter r from parameter R by steps (a) and (b).

(a) After receiving P = {R, σ, μ} (𝑅 = 𝑒(𝑢, 𝜐)𝑟) from the server, it

guesses upon r' and uses it to verify equation 𝑅 = 𝑒(𝑢, 𝜐)𝑟′
.

(b) If the equation is true, it learns that r' is correct; if false, repeat (a).

(2) It picks blocks m2~m9 to audit and stores 𝜇2,9 after receiving P from

the server, 𝑃 = {𝑅, 𝜎2,9 , 𝜇2,9} (𝜇2,9 = 𝑟 + 𝛾 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=2).

(3) It again picks blocks m1~m9 to audit and, after receiving

𝑃 = {𝑅, 𝜎1,9 , 𝜇1,9} from the server, stores 𝜇1,9 = 𝑟 + 𝛾 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=1

i.e., 𝜇1,9 = 𝛾 ∗ 𝑚1 ∗ 𝜈1 + 𝜇2,9.

(4) It then guesses on the random value of m1', calculates 𝜇1,9′ = 𝛾 ∗

𝑚1′ ∗ 𝜈1 + 𝜇2,9 and uses the result to verify equation

𝑒(𝜎𝛾, 𝑔) = 𝑒((∏ 𝐻(𝑊𝑖)
𝜈𝑖)9

𝑖=1
𝛾

 ∗ 𝑢𝜇1,9
′
, 𝜐).

(5) If the equation is true, it knows m1
' is correct and use it to get m1 (user

privacy thus leaks); if false, it can return to (4) to repeat the guessing

attempt.

3 The Proposed Scheme

Our basic idea, as mentioned, is to keep the TPA from learning any

user data block in an earlier stage. That is, to prevent user privacy leakage,

we can conduct – in advance – some calculation on user data blocks

without affecting the original third-party public auditing features. The

idea leads us to the construction of an efficient new scheme which will

blind each user data block in an earlier stage to avoid possible user

privacy leakage in the auditing process and to secure better privacy

protection than existing schemes, including the PoR scheme and other

blind schemes. Different from the original Blind scheme [2], our new

scheme will generate a random parameter p in the key generation stage

and use p to blind metadata σi which contains data block mi. After the

calculation, the user sends parameter p to the server. When a TPA sends

a challenge message to the server for data auditing, the server will

calculate the corresponding proof by metadata σi, data block mi and

random parameter p, and return the proof to the TPA. The TPA then uses

the received proof and the public key pk (generated by the user) to audit

data integrity. Such a simple but effective practice can practically solidify

user privacy protection because it helps reduce the probability of privacy

leakage as much as possible during the auditing process.

Our new scheme works as follows.

▲User Setup

* KeyGen

(1) choose random secret keys p, x ∈ Zp

(2) choose random elements u, name ∈ G1

(3) choose a random element g ∈ G2

(4) compute υ = gx

(5) generate secret key sk = (p,x) and public key pk = (u, g, υ, name)

* SigGen

(1) compute metadata σi for each data block mi, 𝜎𝑖 = (𝐻(𝑊𝑖) ∗ 𝑢𝑝∗𝑚𝑖)𝑥,

Wi = name||i.

(2) send p, F and Φ = {σi }1≦i≦n to the server

▲TPA Auditing

* ProofGen

(1) The TPA picks random c blocks to audit (assume the collection of c is

I, I = {s1,.....,sc}, c < n).

(2) It then chooses random c elements{νi ∈ Zp}i∈I, generates a challenge

message chal = {(i, νi)}i∈I and sends chal to the server.

(3) Receiving chal, the server will calculate proof message P = {σ, μ}

(𝜎 = ∏ 𝜎𝑖
𝜈𝑖

𝑖∈𝐼 ; 𝜇 = 𝑝 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼) and send P to the TPA.

* VerifyProof

(1) Receiving proof P, the TPA moves to verify the following equation by

the public key pk (generated by the user):

𝑒(𝜎, 𝑔) = 𝑒((∏ 𝐻(𝑊𝑖)
𝜈𝑖) ∗ 𝑢𝜇

𝑖∈𝐼 , 𝜐).

(2) Return True if the equation is true or False otherwise.

Note that, in the above auditing process, when we maintain the

equation to be true so that the TPA can audit data integrity, we meanwhile

ensure better privacy preservation for the user – due to the reduction of

some auditing process and also some parameters in the original Blind

scheme. The reduction in the auditing process and parameters can

effectively refrain the TPA from learning about the user data. The major

advantage of our new scheme lies in that, without incurring additional

computation time, it improves the privacy leakage problem in related

schemes and meanwhile maintains the required third-party public data

auditing ability. More specifically, with some extra calculation, our

different design is able to enhance user privacy preservation at no

additional computation time cost (to be further demonstrated in the next

section).

4 Performance Evaluation

4.1 The Zero Knowledge Proof

The following zero knowledge proof will demonstrate our ability to

preserve user privacy in the auditing process. Recall that, in our scheme,

the TPA knows all parameters except the secret keys (p and x) and data

block mi. To learn about data block mi, the TPA must work out on

parameters σ and μ which are sent by the server and contain mi. It

nevertheless cannot get mi from σ (𝜎 = ∏ (𝐻(𝑊𝑖) ∗ 𝑢𝑚𝑖∗𝑝)𝑥∗𝜈𝑖
𝑖∈𝐼) when

auditing a single block because, to audit a single block m1, it will receive

proof message P = {σ, μ} from the server, where

 𝜎 = (𝐻(𝑊1) ∗ 𝑢𝑚1∗𝑝)𝑥∗𝜈1.

To get m1, the TPA needs to guess on the random values of m1', x' and p'

in the first place, calculate

 𝜎′ = (𝐻(𝑊1) ∗ 𝑢𝑚1′∗𝑝′
)

𝑥′∗𝜈1
= 𝐻(𝑊1)𝑥′∗𝜈1 ∗ 𝑢𝑚1′∗𝑝′∗𝑥′∗𝜈1

and then compare if σ = σ'. If σ = σ', the TPA will take the guessed value

of m1' as the true value of m1. The problem is, even if σ = σ', the correct

m1 will not necessarily equal the guessed m1' – because there are

obviously more than one set of (m1', x', p') which makes σ = σ'. That is to

say, even if the TPA makes out the values of m1', x' and p' which lead to σ

= σ', it may not get the true value of m1.

For similar reasons, the TPA can neither use μ (𝜇 = 𝑝 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼)

to learn about mi when auditing a single block. When the TPA is to audit

a single block m1, it will receive 𝜇 = 𝑝 ∗ 𝑚1 ∗ 𝜈1 from the server. To get

m1, it must guess on the random values of m1' and p', calculate 𝜇′ =

𝑝′ ∗ 𝑚1′ ∗ 𝜈1 and then compare if μ = μ'. If μ = μ', it will take the guessed

value of m1' as the true value of m1. But when multiple (m1', p') sets make

μ = μ' (as in the above case of σ = σ'), the guessed m1' may not be the

correct m1. Obviously, if the TPA fails to get mi when auditing a single

data block, it will not get mi when auditing multiple data blocks because

– when asking to audit multiple data blocks, it will confront σ and μ whose

values are respectively the product and sum of the multiple blocks.

4.2 The Computation Time

To attain advanced performance evaluation, we carry out extended

simulation runs to collect the required computation time in PoR, Blind

and our new scheme (Ours) for comparisons. We set up three entities to

represent the TPA, user and server by virtual machines and use the

Pairing-Based Cryptography (PBC) library [13] and C programming

language as the tools. The main purpose is to exhibit we attain the

performance gain in user privacy preservation (i.e., attain better user

privacy protection) at no additional cost of computation time in

comparison to the other target schemes.

(1) The User Computation Time

Figure 1 depicts the user computation time for the three schemes. The

user computation time indicates the time required for the user setup phase

which includes key generation and signature generation steps. Consider

the fact that different data sizes involve different user computation time,

we hence divide the overall user computation time by the number of data

blocks to get UCTPB (user computation time per block) in milliseconds

(ms). In Figure 1, c is the number of data blocks the TPA is to audit (we

set c = 300 and 460, as in [2]).

Figure 1 depicts quite similar UCTPB values for all three schemes. In

𝜎𝑖 = (𝐻(𝑊𝑖) ∗ 𝑢𝑝∗𝑚𝑖)𝑥 – the formula to calculate metadata σi for each

data block mi, we find our scheme takes one more power computation for

each data block because we need to calculate up*mi, whereas PoR and

Blind each calculate only umi. To reduce the increase in computation time,

we act by conducting the multiplication p*mi first because it takes only

another multiplication computation, instead of power computation, for

each data block. The act, as Figure 1 shows, substantially reduces the user

computation time for our scheme.

Figure 1. The user computation time for various schemes.

(2) The Server Computation Time

Figure 2 gives the server computation time for the three schemes. The

server computation time starts when the server receives a challenge

message from the TPA and ends when it completes calculating the proof

message. Figure 2 again shows similar results for all schemes, indicating

that our new scheme yields better performance in privacy protection than

PoR and Blind – without additional cost in server computation time. Note

that we do not consume additional server computation time mainly

because we take no more computations than the Blind scheme to blind

each data block and need only one extra multiplication p (𝜇 = 𝑝 ∗

∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼) in contrast to the PoR scheme (𝜇 = ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼).

(3) The TPA Computation Time

Figure 2. The server computation time for various schemes.

Table 1. The comparison among the PoR scheme, the Blind scheme

and our scheme

 The PoR scheme [1]

The Blind scheme

[2]

Our scheme

Basics PoR PoR PoR

Phases User Setup: KeyGen

and SigGen

TPA Auditing:

ProofGen and

VerifyProof

User Setup: KeyGen

and SigGen

(same as PoR)

TPA Auditing:

ProofGen and

VerifyProof

(generate r)

User Setup: KeyGen

and SigGen

(generate p)

TPA Auditing:

ProofGen and

VerifyProof

Enhancing

privacy

no generate a random

parameter r to blind

parameter μ during

TPA auditing

generate a random

parameter p in the early

stage of key generation,

use the parameter to

blind metadata σi which

contains data block mi

and then send p to the

server

Effective-

ness

induce possible user

privacy leakage

because the server

needs to send the proof

message P (= {σ, μ})

along with parameter μ

to the TPA

confront possible user

privacy leakage

because the TPA can

still find ways to fetch

any data blocks

reduce some auditing

process and some

parameters in the Blind

scheme to effectively

refrain the TPA from

learning about the user

data

User

privacy

leakage

yes yes no

Zero

knowledge

proved

no no yes

Extra user

computa-

tion

no no no

Extra

server

computa-

tion

no no no

Extra TPA

computa-

tion

no yes (one extra

multiplication (*R)

and two extra power-

of-γ computations)

no

The TPA auditing process listed in previous sections for the three

schemes shows that PoR and our new scheme take the same TPA

computation time because both conduct totally identical TPA

computation in the auditing process. Among the schemes, Blind

consumes the most TPA computation time due to its application of one

extra multiplication (*R) and two extra power-of-γcomputations.

A comparison table is listed in Table 1 to help recap the features of

the three target schemes.

4.3 Other Disscusions

A number of more recent approaches, e.g., [9,12,14-16], have been

introduced in the literature to enhance the third-party auditing process.

Among the schemes, some [9] employs the key-exposure resilience

technique to update the secret keys in order to reduce the damage of

client key exposure during cloud storage auditing. Some [14] attempts to

ensure the security of stored data by decomposing the whole encrypted

file into different pieces and storing the pieces in randomly chosen cloud

servers – to keep key authorities from decrypting the complete file. The

design improves not only security but also the processing burden of a

single server. The other schemes include introducing a proxy into the

traditional public auditing system to release data owners out of online

burden [12] or to audit the shared data in cloud by means of the group

signature [15] or secret sharing [16]. We believe that, with any of these

approaches brought to work with our new scheme, we can turn over

stronger performance, in addition to proper user privacy preservation –

which is our major goal in this investigation.

5 Conclusions

In cloud storage, the third-party auditor (TPA) performs public

auditing and data integrity check to help maintain the integrity of

outsourced data stored in the cloud server. During the auditing process, it

is obvious that the TPA should learn nothing about the user to avoid

possible user privacy leakage. Seeing that the practice of existing auditing

schemes cannot fully keep the TPA from fetching users’ private data, we

hence introduce an efficient new auditing scheme in this paper to secure

better user privacy protection. Different from previous schemes, our new

scheme will keep the TPA from learning user data blocks in an earlier

stage. Our basic practice is to generate a random parameter p in the key

generation stage, use parameter p to blind metadata σi which contains data

block mi and then send p to the server. When the server receives a

challenge message from the TPA asking for data auditing, it will calculate

the proof by σi, mi and p, and return the result to the TPA. Receiving the

proof message from the server, the TPA then starts the auditing process

by both the proof and public key pk (generated by the user) to check data

integrity. Such a practice can avoid potential user privacy leakage as

much as possible to uplift privacy preservation. Extensive simulation has

been carried out to check the privacy preserving performance of different

auditing schemes, including the PoR scheme, the Blind scheme and our

new scheme. Our new scheme, as obtained results exhibit, yields better

privacy protection than the other two schemes at no more computation

time cost for all involved entities – the user, the server and the TPA.

References

[1] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc. 14th Int’l Conf. on the Theory and

Application of Cryptology and Information Security: Advances in Cryptology, Dec. 2008, pp. 90-107.

[2] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public Auditing for Secure

Cloud Storage,” IEEE Trans. on Computers, Vol. 62, No. 2, pp. 362-375, Feb. 2013.

[3] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public Auditability and Data Dynamics for

Storage Security in Cloud Computing,” IEEE Trans. on Parallel and Distributed Systems, Vol. 22, No.

5, pp. 847-859, May 2011.

[4] M. Venkatesh, M. R. Sumalatha, and C. Selvakumar, “Improving Public Auditability, Data Possession in

Data Storage Security for Cloud Computing,” Proc. 2012 Int’l Conf. on Recent Trends in Information

Technology, Apr. 2012, pp. 463-467.b

[5] J. Angela Jennifa Sujana and T. Revathi, “Ensuring Privacy in Data Storage as a Service for Educational

Institution in Cloud Computing,” Proc. 2012 Int’l Symp. on Cloud and Services Computing, pp. 96-100,

Dec. 2012.

[6] T. K. Chakraborty, A. Dhami, P. Bansal, and T. Singh, “Enhanced Public Auditability & Secure Data

Storage in Cloud Computing,” Proc. 2013 3rd IEEE Int’l Advance Computing Conf., Feb. 2013, pp. 101-

105.

[7] L. Chen and H. Chen, “Ensuring Dynamic Data Integrity with Public Auditability for Cloud Storage,”

Proc. 2012 Int. Conf. Computer Science & Service System, Aug. 2012, pp. 711-714.

[8] B. Wang, B. Li, and H. Li, “Oruta: Privacy-Preserving Public Auditing for Shared Data in the Cloud,”

IEEE Trans. on Cloud Computing, Vol. 2, No. 1, pp. 43-56, Jan.-Mar 2014.

[9] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling Cloud Storage Auditing with Key-Exposure

Resistance,” IEEE Trans. on Information Forensics and Security, Vol. 10, No. 6, pp. 1167-1179, Feb.

2015.

[10] R. Navajothi and S. J. A. Fenelon, “An Efficient, Dynamic, Privacy Preserving Public Auditing Method

on Untrusted Cloud Storage,” Proc. Int’l Conf. on Information Communication and Embedded Systems,

Feb. 2014, pp. 1-6.

[11] K. Yang and X. Jia, “An Efficient and Secure Dynamic Auditing Protocol for Data Storage in Cloud

Computing,” IEEE Trans. on Parallel and Distributed Systems, Vol. 24, No. 9, pp. 1717-1726, Sep. 2013.

[12] J. Liu, K. Huang, H. Rong, H. Wang, and M. Xian, “Privacy-Preserving Public Auditing for

Regenerating-Code-Based Cloud Storage,” IEEE Trans. on Information Forensics and Security, Vol. 10,

No. 7, pp. 1513-1528, Mar. 2015.

[13] “PBC Library.” [Online]. Available: https://crypto.stanford.edu/pbc/.

[14] S. N. Bonde and R. Gaikwad, "Data retrieval with secure CP-ABE in splittened storage," Proc. 2016

Int'l Conf. on Communication and Electronics Systems, 2016, pp. 1-6.

[15] K. B. Ghutugade and G. A. Patil, "Privacy Preserving Auditing for Shared Data in Cloud," Proc. 2016

Int'l Conf. on Computing, Analytics and Security Trends, 2016, pp. 300-305.

[16] S. Samundiswary and N. M. Dongre, "Public Auditing for Shared Data in Cloud with Safe User

Revocation," Proc. 2017 Int'l Conf. Electronics, Communication and Aerospace Technology, 2017, Vol.

1, pp. 53-57.

